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Abstract
The proliferation of kernel mode malware and rootkits over
the last decade is one of the most critical challenges the se-
curity industry is facing. While mechanisms such as UEFI
secure boot in conjunction with signed driver loading effec-
tively verify the integrity of the kernel at load time, run-
time verification is still an open problem. Various secu-
rity systems have been proposed solutions to protect the in-
tegrity of the kernel by performing hash-verification of code-
pages. This approach requires one to keep track of a poten-
tially large set of hashes. Other approaches that attempt
to protect code-pages usually do so by heavily restricting
the OS from performing otherwise benign optimizations at
run-time.

In this paper we present an approach for syntactically ver-
ifying the integrity of kernel code with the use of semantic
(binding) information. By leveraging virtual machine in-
trospection, we examine all kernel code pages at runtime
to verify their contents and to reconstruct the active system
state. By emulating the OS’s patching mechanisms, our sys-
tem successfully differentiates between malicious and benign
code changes. We demonstrate the ability to detect mali-
cious kernel code with a set of rootkit samples. Our method
does not restrict modern OS kernels from using otherwise
benign patching routines. To further highlight the impor-
tance of practical kernel code validation, we also present a
critical security issue in the Linux kernel that we discovered
in our research which thus far remained unnoticed.

1. INTRODUCTION
The integrity of the OS kernel is crucial for the security

of the entire system. If the kernel gets compromised, the
attacker can further disable existing protection mechanisms
and take full control over the system and all applications
running on it. This makes the kernel a very lucrative target
for malware authors.

In order to infect the kernel, malicious software generally
loads itself into an area of memory reserved for the kernel.
This can be accomplished by exploiting a vulnerability or
loading a malicious module or driver. In either case, the
result is the inclusion of malicious code in kernel space. Ef-
fectively the code base of the running kernel has changed.
Such a change can generally be observed by an external en-
tity and thus detecting such changes to the code base lends

itself to malware detection.
A large body of research has focused on enforcing ker-

nel code integrity by creating a white-list of hashes of the
kernel’s code-pages [6, 3]. While approaches that do not de-
pend on hash-comparison, such as MoRE [11], have better
performance and can ensure that code-pages remain static
during the execution of the OS, they prevent the kernel from
applying otherwise benign optimizations at runtime. Con-
sidering that the Linux kernel will soon introduce new fea-
tures such as JIT code and dynamic security patching, the
short-comings of these approaches will become even more
limiting in the future.

In this paper we take an in-depth look at the limita-
tions of current runtime integrity verification techniques.
We then highlight patching mechanisms in the Linux ker-
nel that could be abused by an attacker to modify kernel
code pages in a manner that are particularly difficult to de-
tect. Solving this challenge requires a deeper understanding
of the kernel’s various load and runtime self-patching mech-
anisms. In fact, there are several mechanisms for which the
integrity and consistency of a change is verifiable but the re-
sulting state still could be malicious. We also present a novel
method to perform runtime kernel-code integrity checking
that addresses the short-comings of existing systems. In
experiments we show that our prototype implementation
is both effective against kernel-level malware and efficient,
which makes it well-suited for real-world applications.

In summary we make the following contributions:

• We show that current code validation techniques are
not suitable to validate the code integrity of modern
kernels.

• We examine various load time and runtime code patch-
ing techniques employed by modern OS kernels and
discuss the challenges that they create for code valida-
tion.

• We demonstrate the importance of correctly validating
modern kernel code. We do this with a practical exam-
ple that enables an unprivileged user to load arbitrary
executable code into the Linux kernel.

• We introduce a framework that can successfully vali-
date the integrity and identity of dynamic kernel code
and enforces additional security constraints.



2. RELATED WORK
As there is a plethora of work that is focused on kernel

integrity validation in the following we only highlight the
major directions in runtime validation.

One of the first systems that made use of a hash-based
approach was Copilot [6]. Copilot was designed to calculate
hashes of all Linux kernel and module code regions to de-
tect malicious modifications. To achieve this, Copilot makes
use of trusted hardware that is capable of calculating and
comparing the hashes at runtime. The “good” hashes, which
are required as a basis for the detection of modifications, are
obtained by calculating the hashes in a system state that is
considered to be non-compromised. Seshadri et. al [9] imple-
ment a similar hash-based approach to detect kernel rootkits
with their system, Pioneer. In contrast to Copilot, however,
Pioneer does not require special hardware.

SBCFI [5] also computes hashes to validate kernel and
module code regions, but moves the validation component
out of the guest system with the help of a hypervisor to
increase the isolation of the validation component. To pro-
vide a base for the comparison they make use of a trusted
store that contains all trusted executables. Binaries within
the trusted store are relocated before the hash is compared
based on their current location within the guest system. The
problem with such an approach is that the set of possible
hashes can grow arbitrary large during runtime.

Instead of validating kernel code another branch of re-
search focuses on hindering writes to kernel code entirely.
SecVisor [8] forbids writing to code pages by leveraging a
hypervisor to trap write memory events. NICKLE [7] on the
other hand redirects the instruction fetches to kernel code
to a secure shadow version kept within the virtual machine
monitor (VMM). The most recent approach, MoRE [11],
splits the TLB so that data accesses, such as write attempts,
point to a different memory location then the actual code
pages. While the specifics on how they enforce static OS
code pages differs, these approaches all come with the same
penalty: legitimate kernel patching mechanisms, which are
often there to improve performance, are disabled. For this
reason Ianus [4] advocates for only a partial enforcement
against kernel patching where kernel modules are restricted
from modifying code that does not belong to the module
itself. Also Srivastava et al. [10] introduced a system to re-
strict untrusted modules to modify the code pages of the
core kernel. However, without understanding the specific
changes that happen to the main kernel code, such restric-
tions can be easily circumvented.

The only previous work that considers configuration-spe-
cific patching is Patagonix [3]. At its core, Patagonix is
also a hash-based validation system in which the hypervi-
sor stores a hash of all valid code pages. Patagonix makes
the assumption that patching generally only occurs during
load and early boot time. Load time patches are handled
with the help of a list of all possible memory locations that
can be updated, and a list of all possible values for each
memory location. This information is extracted from each
binary before the validation process. Furthermore, the code
validation relies only on binding information, that is, they
do not rely on any “semantics implied by source and sym-
bol information”. While we agree that it is important to
handle non-binding information carefully, as malicious code
is not bound to this information, we argue that one must
consider non-binding information to be able to properly val-

idate the dynamic runtime changes conducted by modern
OS kernels. For example, many of the runtime patching
mechanisms used by the Linux kernel depend on the cur-
rent software state of the running system. This information
is non-binding by its nature. As Patagonix does not make
use of non-binding information, it is unable to validate the
changes conducted by these mechanisms.

The common problem with all these approaches is that
they consider kernel code to be static once it has been loaded
into memory. Modern kernels, however, make use of many
optimizations that require runtime patching, which renders
these approaches obsolete. To validate kernel code it is
thus essential to understand the individual runtime patching
mechanisms that the kernel uses. Once these mechanisms
are understood, we can implement code integrity validation
mechanisms that reliably detect malicious modifications at
runtime. In this paper, we make the first step in this di-
rection and investigate the runtime patching mechanisms of
modern Linux kernels.

3. DYNAMIC KERNEL PATCHING
In this section, we present constructs and mechanisms

within modern OS kernels that make simple hashing tech-
niques ineffectual. Our investigation is primarily based on
the Linux kernel (Version 3.8, 64-bit), however some con-
structs also apply to the Windows kernel as well. We begin
by taking an in-depth look at the load time patching mecha-
nisms that the kernel uses and then discuss commonly used
runtime patching mechanism in more detail.

Position Independent Code: The first mechanism that
makes plain hashing difficult is position independent code.
While the virtual start address for the kernel itself is fixed
at compile time, the load address for each module is dy-
namic. Thus, the compiler can not predict the addresses
of external symbols at compile time. Instead the necessary
addresses are patched during the module’s loading process.
This is known as relocation. The relocation information
is contained within each module binary. For each segment
within the module a relocation table lists all references to
both internal and external symbols.

Configuration-specific Patching: In addition to patch-
ing the modules for external symbols as described above, the
Linux (module) loader may also replace code with architec-
ture and configuration-specific opcodes or code blocks that
are only present in certain configurations. This is done to
improve performance, leverage special features such as sym-
metric multiprocessing (SMP) or (para-)virtualization on ar-
chitectures that support them, or to provide extensibility.
With these mechanisms the kernel can even replace entire
functions. Such patching not only takes place in kernel mod-
ules, but in the kernel code as well.

Alternative Instructions (Load Time): For certain
functionality, the opcodes used vary depending on the CPU’s
feature set. Generally, this approach is used when later CPU
models support more efficient instructions. A list of alter-
native instructions is provided with each kernel binary, or-
dered by the most preferred as last in the list. The Linux
module loader replaces each instruction if the requested fea-
ture is supported by the CPU. Notice that this is the only
configuration-specific patching mechanism that is considered
by Patagonix [3].

Hypercalls (Load Time): Another situation in which
code is commonly patched within the kernel is related to vir-



tualization, in the form of hypercalls. Hypercalls are anal-
ogous to system calls in a virtualized environment which
enable the guest system to interact with the hypervisor. Ex-
amples of such hypercalls include enabling and disabling in-
terrupts, writing to specific processor registers, and MMU
related functions.

As with relocation, hypercalls can not be inserted dur-
ing compile time. Thus, the compiler provides hints in the
compiled binary that a specific function (e. g., writing to the
CR3 register, which holds the page tables for the currently
executing process) is requested at a specific location in the
kernel code. During load time the kernel is then able to
decide how the requested function is provided and inserts
the appropriate functionality. This can be done by inserting
the corresponding opcodes directly, calling a function pro-
vided by the hypervisor, or even by jumping to a predefined
location.

To facilitate this mechanism, the kernel maintains a ta-
ble of alternatives introduced by a hypervisor-specific driver
that can be used as a replacement for a given instruction.
This feature is even employed in a non-virtualized or full-
virtualized environment. In this case the kernel provides the
native implementations for the requested functionality.

Symmetric Multiprocessing (Runtime): SMP de-
scribes an architecture with multiple CPUs that share mem-
ory, which is very common in modern PCs. There are por-
tions of the kernel code that become critical sections (i. e.,
they share data that should only be accessed in a mutually
exclusive fashion) when multiple CPU cores are available. In
this case, the critical section must be protected with locks.
However, the kernel only activates these locks if it is oper-
ating in an environment in which more than one CPU is
present. This makes sense as the locking and unlocking op-
erations are computationally expensive tasks and become
unnecessary if there is only one CPU.

Furthermore, the Linux kernel supports enabling and dis-
abling CPUs at runtime. This results in such patching also
taking place at runtime. Note that adding and removing
CPUs in a virtualized environment is frequently used for
scalability. In addition to SMP locks it is conceptually also
possible to patch arbitrary other instructions, in a fashion
similar to alternative instructions, during runtime, once the
number of active CPUs changes.

Jump Labels (Runtime): The Jump Labels mecha-
nism is used within the kernel to optimize ”highly unlikely”
code branches to the point that their normal overhead is
close to zero. Instead of checking whether a branch should
be taken or not, the kernel either replaces the conditional
jump with a no operation (NOP) instruction, and thereby
omits the unlikely code, or with an unconditional jump to
the unlikely code. Thus, the enabling/disabling of the func-
tion is an expensive task, but the runtime cost is completely
avoided. Although it was mainly intended for debugging and
tracing features, this mechanism is now frequently used both
in the Linux scheduler and in the networking subsystem. For
example, the latter uses it to activate and deactivate certain
netfilter hooks.

Function Tracing (Runtime): Another mechanism that
requires runtime code patching is the Ftrace function tracer.
This tracer is used to debug the kernel or measure per-
formance. It is commonly called at the beginning of each
function within the kernel or its modules. For performance
reasons, each tracer call is replaced by a NOP slide when

the feature is currently disabled. Although the feature is
similar to the Jump Labels mechanism, its implementation
is different and it depends on other kernel data structures.
Consequently, both mechanisms must be considered sepa-
rately.

Summary. All of the runtime patching mechanisms men-
tioned above can be used at any time within the operation
of the kernel. Consequently, the kernel’s code pages are not
static, meaning that simple hashing of code pages is not
enough to validate its integrity. In addition, as the patching
of the kernel’s code depends on the current state of the run-
ning system, we must consider semantic information taken
from within the guest OS to validate code integrity. To the
best of our knowledge, we are the first to apply semantic
knowledge for run-time verification of the kernel.

4. SYSTEM DESIGN
In the following we describe a new architecture for ker-

nel code integrity validation that handles dynamic changes
within kernel code. The overview of our architecture is
shown in Figure 1. Our architecture makes use of virtual
machine introspection (VMI) to provide both isolation and
tamper resistance for our system. The three main compo-
nents of systems are discussed more in depth in the following:
(1) the Preselector (PS), (2) the Runtime Verifier (RV), and
(3) the Lazy Loader (LL).

4.1 Preselector (PS)
The task of the PS is to obtain the executable pages of

the kernel, to divide code pages from data pages, and to
associate code pages with a specific module or the kernel. To
accomplish the first, the PS walks over the target system’s
page tables and extracts all supervisor pages that are present
and executable. Since the virtual memory mechanism and
the position and structure of page tables are specified by the
hardware, this information is binding. That is, it reflects the
true state of the system at the time of the validation.

The PS then assigns all pages, that were collected in the
previous step, to their corresponding module or the kernel.
Therefore, it extracts the list of currently loaded modules
from the monitored system together with their code and
data regions’ virtual addresses. Based on the extracted
data, it assigns the physical page frames to the modules
by converting the obtained virtual addresses into physical
addresses. The kernel binary is similarly processed. In this
step the PS also separates code pages from executable data
pages, by checking to which section the physical page be-
longs to.

In the next step, the PS performs an initial integrity check.
It identifies pages that could not be mapped to either the
kernel or a module and have the supervisor flag set. If such
a page exists it is considered malicious. Thus, if a rootkit in-
troduces code into the kernel and removes itself from the list
of loaded modules, a common technique, it will be detected.

Finally, the PS processes executable kernel data pages.
Although data pages should be marked as non-executable,
this is not the case in practice. In the case of Linux, all
allocated data segments and especially pages that are allo-
cated with kmalloc were marked writable and executable.
To solve this issue, the PS will mark all data pages as non-
executable, a simple and effective solution. Since data pages
should actually never be executed, this approach works well
in our experiments.



Run-time Verifier (RV)
<page>

GuestSecure VM

Hypervisor

Preselector (PS)
locate executable pages
A

map page to module

load trusted context
 a

apply and check 
dynamic modifications
a

validate page contents 

introspection

validate codepages

Lazy Loader (LL)
 <module>

load trusted module
 a

load dependencies
 a

apply static modifications

load
recursive

dependencies

contains trusted
reference binaries

if not 
already
 loaded

provide static
context Trusted whitelist

check
whitelist

check
executable pages

Figure 1: Architecture of the proposed code page validation framework.

4.2 Runtime Verifier (RV)
The RV is the heart of our system because it processes the

code pages that it obtained from the PS. When it processes
a page, it first checks whether the module the page belongs
to has already been processed by the LL. If this is not the
case it will invoke the LL, which is responsible for loading a
trusted version of the respective module into memory.

Once a module has been processed by the LL, the RV
will apply all predictable dynamic changes to the trusted
reference binary and then compare each extracted kernel
code page with the corresponding trusted reference. This
comparison is conducted in a byte-by-byte manner. Once
an inconsistency between the currently used code and the
trusted version is detected, the RV validates whether this
change is due to legitimate dynamic patching.

To check whether a change was conducted due to a dy-
namic patch, the RV makes use of a list of dynamic patch
information that it obtains together with the module from
the LL. This list is unique for each module (and the kernel)
and contains information about each dynamic patch sym-
bol within the binary. For each dynamic patch symbol, the
list states the location of the symbol and the reason of the
patch. Based on this information the RV can check whether
a change that was conducted belongs to a dynamic patch
symbol and if the currently applied change is valid for the
given patch symbol. To make this scheme work, the RV ad-
ditionally extracts all information from the monitored sys-
tem that influences dynamic changes. This includes both
information about the current architecture as well as infor-
mation about the current system state. For example, a jump
label can be enabled and disabled at runtime. Thus the RV
must extract its current status from the monitored system
before it can validate the code pages reliably. In this step
the RV also checks the internal state of the running guest
that is related to dynamic patching. This is both the ker-
nel’s information about the patching symbol as well as the
current state. Only if the changes can be reconstructed and
validated, the identity of the code page is validated. Notice
that both information sources - the dynamic symbol list as
well as the runtime information - are crucial, since an at-
tacker is otherwise able to launch mimicry attacks, which
we further discuss in Section 5.

4.3 Lazy Loader (LL)
In order to validate the integrity of a kernel code page

in memory, the RV requires a trusted copy of that page
from a trusted reference. To achieve this, the LL loads each
module’s (and the kernel’s) binary from a trusted location,
performs all load time modifications on it, and generates a
list of dynamic patch symbols.

When the LL is invoked, it attempts to find the requested
module using its name. Thus it requires access to a secure
location containing all trusted kernel binaries. The contents
of this location essentially functions as a whitelist and it
is therefore crucial that its location is protected against at-
tackers. We achieve this isolation through virtualization and
store the trusted reference binaries outside of the monitored
guest. In cases where the required binary is not contained
within the secure location, the module is considered to be
malicious. Otherwise the LL will load the binary into mem-
ory and will apply all predictable modifications, like reloca-
tion and loading of external symbols to it.

Finally, the LL must extract all runtime patchable loca-
tions for each module. It iterates over all patchable locations
within the module and extracts all of the symbols that are
relevant for runtime patching. In this process, it already
applies all patches that are handled during load time. The
list of the dynamic patch symbols as well as the binary rep-
resentation is then returned to the RV.

5. IMPLEMENTATION
After giving a general overview over our proposed frame-

work, we now discuss the implementation in more detail.
In the following we present our implementation of a frame-

work to enable integrity validation of Linux kernel code
pages on the x86 architecture. To handle dynamic patching,
it is essential that our system is able to access the hardware
and high-level software state of the guest system at runtime.
While the former is easily possible from the hypervisor, ac-
cessing the high-level software state of the guest kernel from
the VMM requires that we bridge the semantic gap [1]. To
solve this problem, we navigate to the desired data struc-
tures by following pointers through the object graph start-
ing at global variables. The location of the global variables
is obtained from the trusted kernel reference binaries. The



layout of the corresponding structures is derived from the
binaries DWARF debug information.

5.1 Identifying Executable Pages
The first component of our architecture is the PS. To be

able to validate kernel code pages and to detect hidden code
pages, our system initially requires a list of all executable
kernel pages contained within the guest’s memory. The PS
obtains this list directly from the trustworthy underlying
hardware, as it iterates through the page tables that are
currently used by the system. The physical address of these
page tables is contained within the CPU’s CR3 register.

Once the list of executable kernel pages is generated, the
PS maps each page in the list to the kernel’s or a module’s
code section. It extracts the addresses of important ker-
nel structures such as the location of the .text or .data

segment of every kernel module directly from the guest sys-
tems memory by reading the corresponding data structures.
The addresses of the kernel’s .text and .data section are
extracted from its binary representation.

In practice there are two types of executable pages: ded-
icated code pages and executable data pages. In our test
environment all of the kernel’s data pages were actually
mapped as executable, which is consistent with the fact
that newly allocated pages also are mapped as executable
per default. As previously mentioned we set all pages non
executable.

5.2 Handling Load Time Patching
Similar to the kernel, we use a multi-staged process to

reconstruct the contents of each executable page. First, all
load time modifications are precomputed in the LL. In ad-
dition to the relocation and external symbol resolution, this
phase also includes the patching of hypercalls and the pro-
cessor dependent improvements. For a specific target system
these steps are only reproduced once. The dynamic runtime
patching mechanisms are considered in the second phase,
which is conducted by the RV.

After the executable pages are assigned to their corre-
sponding kernel component, the PS calls the RV to validate
the contents of each page. The RV then invokes the LL
for each module in order to obtain the validation context
for that module. If the module’s context is already initial-
ized, the LL returns that context. Otherwise it initializes
the trusted context as already described in the previous sec-
tion. Note that this essentially replicates the kernel’s loading
process, as the LL also loads all of the dependencies of the
requested modules.

After loading the trustworthy reference and all of its de-
pendencies, our framework takes care of the relocation of in-
ternal symbols. Therefore, the binary representation of each
module contains a list of locations and their corresponding
symbols that need to be relocated. For each location and
each internal symbol we calculate its virtual address in the
memory of the inspected VM. We then replace each reference
to a symbol with its absolute virtual address or a relative
offset to this address depending on the type of relocation.

After the relocation we resolve external symbols. As with
relocation, we replace all references to external symbols with
the absolute address of the external symbol or a relative off-
set to its location. As to avoid relying on potentially com-
promised data-sources, our system doesn’t rely on the mon-
itored kernel’s resources (e. g., its System.map or its internal

list of exported symbols). Instead, we follow the kernel’s
dependency mechanism, by recursively loading all depen-
dencies of the current module and initializing their full con-
text for later usage. Thereby we also create our own list of
(exported) symbols for each of the kernel binaries. When
resolving an external symbol we consult our internal list of
symbols.

Next, we process alternative instructions that are provided
with each binary. As a reminder, this feature allows one to
substitute specific instructions within the code with other in-
structions based on the current hardware. To decide whether
the substitutions should be conducted, we obtain the nec-
essary information from the virtual hardware. With a list
of features at hand we now walk through the list of alterna-
tive instructions and substitute the referenced instructions,
whenever the required feature is available.

Finally, the LL updates the instructions within the binary
which depend on the host hypervisor. For this purpose, each
binary contains a segment with a list of locations together
with the type of patch that is to be applied. In contrast to
the alternative instructions, the possible patch values for the
locations are contained within a kernel data structure pro-
vided by the virtualization solution, not the kernel binary
itself. Whether the patch that is applied is a simple instruc-
tion patch or a jump/call to another function is determined
by the specific virtualization driver that is in use.

As we know exactly which hypervisor is being used, we are
able to validate these patches through a whitelist. For this
purpose our framework provides a plugin system to be easily
extensible. This enables it to support different hypervisors
(e. g., KVM, Xen) or additional patching mechanisms that
may be introduced in the future as well. Since we, in this
case, cannot trust the kernel’s data structure, the whitelists
for each hypervisor are generated from a trusted copy of this
kernel data structure. In contrast to the original structure,
the copy does not contain addresses, only the name of the
symbol that is used. This is because the address of a function
may vary due to relocation, while the symbol name is unique.

5.3 Handling Runtime Patching
After load time modifications are applied, the LL hands

the initialized context to the RV. The task of the RV is to
validate all dynamic modifications that cannot be predicted.
Therefore, it analyses the current system state and also
applies changes conducted by the runtime patching mech-
anisms. Afterwards it iterates byte-by-byte over all exe-
cutable pages of the monitored system and compares them
with the appropriate pages of the internal reference binaries.
If a difference is detected, the RV will match the difference
against one of the known runtime patching mechanisms.

The first mechanism checked is the SMP related patching.
We obtain the number of currently active CPUs and adapt
the locks within the trusted reference accordingly. Note that
the number of CPUs is not necessarily static on a modern
system. For example, in virtualization-based cloud environ-
ments it is common that vCPU cores are added and removed
at runtime.

The next mechanism handled is the Ftrace function tracer.
To validate an Ftrace function call, the RV first checks if
the corresponding tracing functionality is enabled within the
guest. Based on the state of the tracing mechanism, it then
ensures that the Ftrace function call is either replaced with
NOPs (tracing disabled) or that the call points to the __fen-



try__ symbol (tracing enabled). The latter can be validated
using the internal symbol list of our framework.

Jump Labels are another feature of modern Linux kernels
that requires patching at runtime. To reiterate, with this
feature a kernel developer is able to mask unlikely branches
during normal execution. The mechanism provides a list
of offsets inside the executable code together with a jump
destination for each offset. At runtime the branch can be en-
abled or disabled by calling a specific function. The kernel
therefore handles all jump targets within an internal data
structure. Each entry in that structure contains a key, that
indicates the current status of the jump label. To validate
jump targets, our framework compares the value of this key
with the current state of the jump target on the executable
page. If the states match, the current target on the exe-
cutable page is compared with the original target specified
in the trusted reference binary. The change is only consid-
ered benign, if all information is consistent.

The final check that is performed by the RV is to ensure
that pages that only partially contain code are valid. This
situation arises when a code segment of a module or the ker-
nel is smaller than an entire page of memory. In this case
the code segment will only occupy a part of the page, while
the remainder is unused. Since the page is executable, an
attacker could try to inject code by modifying the unused
code areas. In practice such an attack should be easily de-
tectable as all unused kernel code regions are by default set
to zero on Linux. Thus our framework protects against such
attacks by ensuring that the unused space on the last page
of a code segment does not contain any non-zero bytes after
the end of the code. We will further discuss in Section 7
how some of this space is currently also dual mapped into
userspace.

6. EVALUATION
After having introduced our framework for dynamic code

integrity validation, we now present the evaluation of our
framework. First, we evaluated the effectiveness of our ap-
proach in the case of kernel code integrity violations. For
this purpose we evaluated the detection capabilities of our
system using multiple rootkits. In a second set of experi-
ments, we measured the performance impact introduced by
our system. In the following we describe the experiments
and their results in more detail. We conducted all tests on
an AMD Phenom II X4 945 Processor with 16 GB of RAM.
As monitored guest we chose Ubuntu 13.04 with 512 MB of
RAM on the KVM hypervisor. The validation component of
our framework as described in Section 5 was executed within
the host OS.

6.1 Effectiveness
The primary goal of our proposed framework is to reliably

detect kernel code integrity violations. To test our frame-
work in this regard, we conducted multiple experiments with
kernel rootkits. As one integral purpose of rootkits is to pro-
vide stealth, this enabled us to validate the effectiveness of
our framework in a real-world scenario. The rootkits we
tested with were four well-known kernel rootkits: adore-
ng, enyelkm.en.v1.1, intoxonia-ng2 and override. All make
use of Direct Kernel Object Manipulation (DKOM) to hide
themselves inside the victim kernel’s memory.

With our experiments we verified that we were success-
fully able to detect all of these rootkits. In our tests we

could distinguish three detection cases. In the case that the
rootkit removed itself from the module list within monitored
guest, our framework was unable to match its executable
code pages to a kernel component. It marked the rootk-
its executable pages as malicious. When a rootkit did not
hide itself from the list of loaded modules, our framework’s
LL didn’t find a corresponding trusted representation of the
module and thus marked the module as malicious. To fur-
ther test our system we also renamed one of the rootkits to
reflect a module contained in our whitelist. In this experi-
ment the LL loaded the trusted version of the decnet module
and the RV detected the mismatch.

Additionally, in all cases our framework detected all changes
to the kernel code that were introduced by the rootkits.
As our framework successfully identified all valid dynamic
patches within the code pages, we had no false positives
related to the kernel’s dynamic patching mechanisms. Fur-
thermore, the framework correctly informed us about the
code pages that contained content that originated from user-
space and automatically set all executable data pages to not
executable.

6.2 Performance
To verify the applicability of our approach we also mea-

sured the performance imposed by our framework. As the
kernel code is usually only patched infrequently, we provide
a worse case evaluation scenario. We decided to monitor and
validate the guest system live in a continuous manner which
generates as much stress to the system as possible. At the
same time, we executed a memory and I/O intensive task
within the monitored VM. We compiled apache2 repeatedly.

In the first test, we only consider the case in which our
framework is uninitialized and the LL component of our
framework needs to load all trusted reference binaries. On
average it took 4.051s to validate all kernel code pages with-
out prior initialization. As this loading step is only required
once, the case in which the framework is already initialized
is a more accurate measurement of run-time overhead. In
this case, the validation of all kernel code pages took on
average only 0.279s. During that time all 141 executable
kernel code pages of our test environment where identified
and validated. The check of a single page thus only took
0.002s (2ms), which is a negligible overhead.

6.3 Security Considerations
After evaluating the effectiveness and the performance of

our system we now talk about the security of our approach.
To validate the integrity of the kernel code pages our frame-
work considers untrusted semantic information provided by
the guest. Since this information is non-binding and could
be tampered with, careful consideration has to be given to
this serious security issue. In our case, we only derive aux-
iliary information from the guest system. That is, even if
an attacker changes the information that our framework ex-
tracts, it does not break our approach.

In the following we will discuss the binding and non-
binding information our framework uses. Our system first
extracts information about all executable supervisor pages
within the monitored system. As this information is directly
obtained from the virtual hardware it reflects the true state
of the system and is therefore trustworthy.

Furthermore, we also extract a list of all currently loaded
kernel modules. We use this list to relate the pages in the



system to specific modules. If an attacker manipulates this
list (e. g., by removing a module from it) our system will not
relate the pages of the hidden module to a known module
and considers them as malicious. Also, if the addresses of
the text or data segment of a module is changed we detect
this inconsistency. Thus using information contained from
this data structure does not affect the security of our system,
as any malicious alteration will be detected.

Another piece of information we process is the list of ex-
ported kernel and module symbols. The kernel’s list of
loaded symbols is a data structure that is commonly used for
this purpose. As we reconstruct the kernel’s loading process
and thus regenerate this information within our framework,
we do not depend on the kernel’s possibly compromised data
structure.

In the next step our framework generates the contents for
SMP locks and alternative instructions that depend on the
current state of the monitored system. This step is once
more based on the virtual hardware, and thus can also be
considered trustworthy. (Para-)virtualization related patch-
ing on the other hand is more difficult to validate. This is
because the modifications conducted by the kernel directly
depend on a kernel data structure provided by the corre-
sponding hypervisor’s driver. Our framework also validates
the integrity of this data structure. As discussed before, we
leverage a whitelist that contains a specific symbol name for
each paravirtualization target. This is important, as in the
case of paravirtualized Xen, some code locations are patched
with an unconditional jump instruction and it is otherwise
not possible to validate these jump targets.

To extract information as to whether a hook for the Ftrace
or Jump Label mechanism is enabled, we again inspect the
current state of the guest kernel. The current state of the
jump/call is contained both within the kernel code and in-
side a kernel internal management data structure. To vali-
date the integrity of the current system state we check if the
state of the code is consistent with the kernels control data
structure. If the current state is not reflected in the trusted
data structure, we consider the change malicious. We fur-
thermore verify that the control data structure is consistent
with the information that is contained within the trusted
reference binary.

Having outlined the security considerations in our system,
we see that handling code changes due to the paravirtual-
ization feature requires a whitelist. We added this function-
ality to increase the security of the guest kernel, though it is
possible to validate the integrity without this whitelist. It is
however, very important to understand that this mechanism
can be leveraged to subvert the security of the kernel without
directly affecting its integrity as this mechanism is intended
to allow for arbitrary patching and hooking. The fact that
this mechanism can be abused is a matter of the design of
the mechanism itself. Virtualization therefore represents a
perfect example of the edge cases that are not considered
by existing systems. We introduce the ability to leverage
whitelists in this situation to reduce the attack surface.

7. USER CODE IN THE LINUX KERNEL
To underline the importance of research in the field of ker-

nel code integrity, we want to describe a particularly alarm-
ing behavior of the Linux kernel that we discovered during
our research. On a high level, the issue we encountered al-
lows an unprivileged user to load arbitrary code into kernel

space. While the code is not executed by default, this makes
exploitation in many cases trivial as the attacker only needs
to find a way to point the instruction pointer into her code.
This represents a critical issue, as there are dozens of secu-
rity mechanisms such as secure boot, signed driver loading,
W⊕X, and Supervisor Mode Execution Protection (SMEP)
that solely exist to hinder an attacker from loading code into
kernel space or executing userland code from kernel space.

The root of the problem is related to performance opti-
mizations, by which the x86 version of the Linux kernel uses
2MB pages to store its code segments. In case the last page
of the kernel code is not completely occupied, the system
has a hole at the end of the kernel code segment. This hole
is effectively allocated to the kernel but remains unused. We
found that instead of letting this memory go to waste, the
kernel reuses this unused memory region and assigns it in
the form of 4KB pages to userland processes, despite the
fact that it is already mapped into the kernel code segment
with both supervisor and executable privileges.

To show the concern of this architectural decision, we im-
plemented an unprivileged userspace applicaton capable of
inserting code into the kernel. In particular, we use the
pagemap feature within the /proc file system to read the
current mapping of virtual to physical pages. To ensure that
our process has a page mapped into the kernel’s text pages,
we allocate multiple page-aligned memory areas, checking
/proc/self/maps and /proc/self/pagemap each time to de-
termine whether the most recent allocation is also mapped
in the kernel’s code segment. In practice, this was surpris-
ingly effective. We found that it only takes a couple of tries
until a page is mapped into the kernel.

Once we control a physical page that is also mapped inside
the kernel text segment, we need to obtain its virtual address
in order to be able to invoke it. As it turns out, calculating
this address is as simple as: <.text> + (pagenr * 0x1000).

This is the case as the first 8 MB of physical memory are
mapped to that address in the so called identity mapping
on the x86 64 architecture. If we assume a vulnerability
inside the kernel which lets us redirect the control flow to
a specific address, we are able to use that vulnerability to
jump to the code we loaded into the kernel. Note that the
vulnerability can be relatively simple as we only need to
be able to control the instruction pointer. Traditionally, a
vulnerability would require the ability to upload a payload,
control the instruction pointer, and in some cases control
the stack pointer in order to exploit it.

Kemerlis et al. [2] recently found a similar problem in the
Linux kernel. They describe that the Linux kernel employs
an identity mapping of the entire physical memory for per-
formance reasons and that this area is not required to be
executable by the kernel. This is a different mapping than
the kernel identity mapping we described in this section.
They then go on to then describe how the physical identity
mapping can be exploited and propose a solution for miti-
gation. Their mitigation method unmaps a page from the
physical identity mapping once it is allocated to userspace.
After the page is no longer allocated in userspace, the page
contents are wiped before it will be mapped to the identity
mapping again. In contract, the vulnerability we discov-
ered shows that a section of the kernel identity mapping is
not occupied by kernel code and is instead allocated to un-
privileged userspace applications. While the attack surface
described by Kemerlis does overlap with our vulnerability,



the mitigation method does not apply. Thus, we propose
that the physical memory, that is part of the kernel identity
mapping, not be allocated to userspace applications.

8. CONCLUSION
Validation of kernel code integrity is an important aspect

of runtime integrity checking. Previous approaches assumed
the kernel code to be static at runtime or only depend on
non-binding information while checking the integrity of ker-
nel code. In this work, we have shown that modern kernels
also employ dynamic runtime code modification. Due to
complicated loading, debugging, and optimization processes,
kernel code must be considered highly dynamic. To address
this, we introduced and implemented a dynamic code valida-
tion framework using both binding and non-binding state in-
formation from the monitored guest. We reconstruct trusted
copies of kernel code pages and differentiate between valid
and invalid changes inside these pages. We also validate the
integrity of the kernel’s internal state related to the dynamic
patching.

To show the viability of our system, we presented several
experiments to test both the effectiveness and performance
overhead of our system. We were able to show that our
framework is able to detect all four of the rootkits we tested.
Additionally, we were able to show that the performance
overhead is as low as 2ms for every change that is made to
the kernel code.

Finally, we discussed several security concerns we had as a
result of our investigation. We identified a yet undiscovered
a double mapping of executable supervisor code pages that
are also mapped to userspace. This enables an unprivileged
attacker to place arbitrary executable code within the ker-
nel without violating protection mechanisms such as signed
driver loading, W ⊕X or SMEP. We discussed these issues
and also successfully implemented a POC to exploit the is-
sue.
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